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NOTATION

dr displacement from rest (generic form)

d initial imperfection (generic form)

d axisymmetric displacement (generic form)

E Young's Modulus

V Poisson's ratio

R shell radius

h shell thickness

L shell section length

.distance from shell mid-surface (positive inwards)

e distance from shell mid-surface to frame centroid
(positive for internal frames)

ee, ex, Y 8  circumferential, axial and shear strains respectively

Af frame area

x axial position; as a subscript denotes differentiation
with respect to x when used in conjunction with u, v, w,

i
w

e circumferential co-ordinate; as a subscript denotes
differentiation with respect to e when used in con-

i
junction with u, v, w, w

ui, v , wI  eigen vector amplitudes associated with Ith basis
function in the expansion of axial, circumferential and
radial bifurcation displacements, respectively

u(x,e), v(x,e), w(x,e) axial, circumferential and radial bifurcation displace-
ments, respectively. (x, and 0 often omitted).
w positive inwards

i
w (x,e) the radial out-of-circularity at x and e. (x and e

often omitted)

i ii
wx , w6  derivatives of w with respect to x and e, respectively

u(x) axial pre-buckling displacement

w(x) radial pre-buckling displacement

w (x) pre-buckling rotation

x
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N. upper limit to the number of basis functions required in
1 the expansion of bifurcation displacements

n number of circumferential waves

e maximum departure from mean circle~oc

x displacement vector

p lateral pressure (positive external)

P axial pressure (positive external)

I wave number of imperfection shape, eoc sin I ix/L
fC OC Or

sf number of frames

number of frame spaces
s

frame spacing

b width of faying flange, or web thickness

R centroidal radius of frameg

Am2  second moment of area of frame, for in-plane bending

A frame area in the Kendrick Frame

) expressions (Appendix)i second moment of area)

-5-
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CLOSED FORM SOLUTION FOR THE BENDING STRESSES IN
RING-STIFFENED SHELLS WITH SHAPE IMPERFECTIONS

INTRODUCTION

An important consideration in the design of externally pressurised
cylindrical shells is the allowance for the shape imperfections which inevitably
occur during manufacture. Components of out-of-circularity which approximate to
critical buckling mode shapes are considerably exaggerated as the applied
pressure approaches the corresponding buckling pressure. Frame stresses may
exceed the material yield strength, precipitating failure by one of several
mechanisms.

2. Many methods are available for finding the buckling pressures of the perfect
ring-stiffened shell, and while frame stresses may be found with simplifying
assumptions concerning the way mode shapes will develop (1, 2, 3)*, comparatively
few analyses exist which allow a completely satisfactory direct solution to the
bending stresses.

3. The purpose of the analysis presented in this paper is to provide a closed
form solution for the displacements and frame bending stresses in a nearly
circular, uniformly framed, ring-stiffened cylindrical shell. The method is
based rigorously on thin-shell theory, but is nevertheless simple enough to
allow calculations to be made on a programmable pocket calculator.

THEORY

4. Kendrick has shown that the strains in a slightly non-circular shell may be
written as follows (1):

ee =(ve - w)/R t (wa2 t u 2 - 2wv)/2R2 + (w iw8 - wiw)/R 2

2 2) i
e ux (1/2)(w X  + v 2 )w w

Yx X U /R +  vx X El

The strains contain quadratic products of the displacements, u, v, w and the
imperfections wi . From equations such as 1l1, a set of linear equations may be

derived, the solution of which yields the displacements and stresses in the
shell. An outline of the derivation is given below in general terms, applying
to any set of strain expressions. A specific derivation, using the original
Kendrick expressions (1) is given in the Appendix.

5. An expression for the strain of shell and frames is written in terms of the

displacements from rest (dr) and the initial imperfection (d1) Parameters dr

and d represent in generic form terms of the following type:

4*( ) =References on page 16

-6-
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r r r r
d: w v , u and their derivatives with respect to axial position x

and circumferential position e11I
i  i i i
d W , W e wx

where w, v and u are respectively radial, circumferential and axial displace-
ments.

2
The strain expression contains terms proportional to d , (dr ) and d d', the
exact form of the expression depending to some extent on the basic formulation
used: the Novazhilov formulation uses a Cartesian co-ordinate system; the
method used by Kendrick uses cylindrical co-ordinates.

6. The total potential energy is given by the following expression

UT = Us + Uf - W

where the contributions from shell (Us) frames (Uf) and external load (W) may
be expressed as

- 27 Jf (x,e) dxd8  [2]Us s

0 0

SUf f2n E uf (x, e) de [3]
frames

0

w w (x, 6) dxde [4]

o o

The shell and frame energy densities (u and uf respectively) contain the follow-

ing types of terms up to cubic order in dr

2 3 2. 3
(d") (dr ) (dr ) dI  (dr ) di

The load potential term has terms in:

2

dr  (d') and dr di

7. Total displacements (d r ) are expressed as the sum of primary displacements

(d) and bifurcation or buckling displacements (d):

dr = did . []

The following terms, of less than cubic order in d or d, are then present in UT

-7-
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dd

-2 2

i2 d dd did

-ad

-3 a2 d -d2 d3

dia 3  di d did dd

ddi did 2d did2 d id3

8. The primary displacements (d) at any desired pressure p are evaluated
first, including if necessary the effects due to an axisymmetric imperfection.
It is assumed that non axisymmetric imperfections are sufficiently small so that
d may be considered to be axisymmetric. The bifurcation displacements d are
found by minimising UT. Bifurcation displacements are assumed to be sufficiently

small to enable coupling between different lobar modes to be ignored. The
bifurcation mode shape is considered therefore to be a pure Fourier mode. With
the simplifying assumptions concerning pre-buckling and buckling displacements,
only five sets of terms need be considered:

From the strain energy densities:

1. d2 (Eh/R)

2. dd (Eh/R
2

-i 2
3. dd d (Eh/R2)

4. did2 (Eh/R
2)

and from the external work:

5. pd
2

where p is the applied pressure.

The typical order of magnitude of coefficients corresponding to each type is
indicated in brackets. Terms 1 and 4 are independent of external load (p).
Terms 2, 3 and 5 are directly dependent on p. The coefficients of type 4 terms
are such that the contributions of the terms are smaller than the contributions

ifrom type 1 terms, by the ratio d /R. The effect of type 4 terms is to couple
different lobar modes for large displacements. Provided the level of out-of-
circularity is small in relation to the radius, and the gradient of the
imperfection surface not too rapidly varying in the x-direction, type 4 terms
may be ignored, maintaining compatibility with the assumption that the develop-
ment of different lobar modes occurs independently.

9. Bifurcation displacements are represented in terms of Fourier functions.

UNLIMITED
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N I

u (x, e) = cos n6 E u1 cos lwx/L

N I

v (x, e) = sin n8 E vI sin Iwx/L [6]
I=l.

NI

w (x, 6) cos ne E wI sin Ix/L
I=l

On minimisation of UT with respect to the amplitudes ui, vi, wi, for I = 1 to N

and scaling to a non-dimensional form, the following matrix problem arises

M x : c [7]

where M : A + B

pR (I - v2 ) / Eh [81

Matrix A contains coefficients of type 1 terms (d 2). Matrix B comprises
coefficients of terms from types 2 and 5. The vector c derives from group 3
terms, and x is the displacement vector whose terms are the amplitudes of the
Fourier functions at any pressure p:

T (u v I w . uI v I ........ UN N wN r i

10. For the perfectly axisymmetric structure (c = 0) the matrix problem of
equation [7] reverts to the standard buckling elgen value problem. Matrices A
and B are identical to the buckling matrices.

11. Prebuckling distributions required for the B matrix and c vector have, in
this paper, been calculated as follows. The axisymmetric radial deformation of
a frame in a uniformly framed, ring-stiffened cylinder, under unit hydrostatic
load is given precisely by the following expression (4, 5)

wf = R (I - v/2) /{Eh [1 +A/ (bh + 2Nh/a)] [0]

where

A Af (R/Rf g

N ( (cosh aL' - cos aL') / (sinh aL' + sin aL')
L' L - b

f

UNLIMITED



UNLIMITED

To conserve radial load, the net circumferential stress in the shell must

satisfy the following equation:

-sh R L /
a L - EA f / 'g [i]

, -sh.
The longitudinal pre-stress a is given by

x

- sh -R/2h [12]

Tbe axisymmetric circumferential strain (e)sh  and the axial strain (U sh) in
the shell are:

-sh = E- 1 sh - vR/2h] [13]

-sh [11[4]sSx = E- v ash R/2h] El ]

for the chosen sign convention, pressure positive external, displacements
positive inwards.

12. The matrix M may now be defined very simply (details in Appendix). Shell
and frame components are considered separately,

M = M + Mf.

For a ring-stiffened cylinder of uniform shell thickness the shell matrices are
banded tri-diagonally,

M (IU ,IU) = m0UU + I2m 2
uu

M s (IU , IV) = Im UV

uw 3 uw
Ms (IU ,IW) = Im1  + 1m 3

15]
vv 2 vv

M (IV ,IV) = mo I m
5 02

vw 122VW
M (IV ,IW) = m + 2 v

(W W) mww 122W wwws o 24
M s (IW , IW) = mow + 1 2 I m 4w

where

IU = 31 - 2

IV = 31-i I 1, 2. ......... N [16]

IW = 31

- 10 -
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to be compatible with the displacement vector definition, equation P9].uu

Expressions for m etc specific to the Kendrick formul:tion are given in the

Appendix.

13. Satisfactory souion of overall buckling problems may be obtained if out-
of-plane bendi26 stiffness of frames is ignored in both A and B matrices (3).
The frame terms of the M matrix then contain neither x-derivatives nor terms in
axial displacement u.

Mf (IV , JV) = fv S(I,J)

M f (IV ,JW) = fvw S(I,J) 117]

Mf (IW , JW) = fw S(I,J)

where

N
f

S(I,J) (2/N ) Z sin (Inx./L) sin (Jdnx./L) [18]
i=l 1 1

14. The c vector may be similarly decomposed into shell and frame terms

c = c s c
- --s --f

If the imperfection is of the form e cos nO sin (I ox/L) the shell components

of the c vector may be written as follows (equations [13] and L23] of the
Appendix):

c (IU) I c16
oc

c (IV) cV& [19]s 0 II 19
oc

c (IW) w c wc 2] 6s [o 2 11
oc

The frame terms are given by

cf (IV) c c(I)
f f

[20]

cf (IW) c c(I)
f f

where

Nf

c(I) = (2/Ns) Z sin (Ix.I/L) sin (I X./L) [2]

L- IITE
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15. For a uniformly framed structure (identical, wm oruily space
sinusoidal components obeying the following relationship for some integral value
of K are coupled (3):

= (j){1- (t-)I] [I'-)s K] t 1 + ( -I)I [Ns -K]}

for I' 1 i, 2, 3. ................ NI [22]

Functions satisfying equation [22] with either " " or "-" in the centre provide
a complete orthogonal set. Selecting the "-" option, it may be shown straight-
forwardly that

S(IJ) = 1 [23]

for all I,J satisfying equation [22]. Only the long wavelength shapes will be
required,

e oc sin (Kx/L) for K = 1, 2, 3. .......... .

representing the fundamental modal components of equation [22]. If I : K,

K 4 Nf, then oc

C(I) =1 [2 4]

for all I satisfying equation [22]. It follows immediately that the fundamental
matrix, equation [7], may be stated in the following form:

M s(IU,IV)uI + M s(IV,IV)vI + Ms(IVIW)w I fv I + f± wI

V V

oc f[25]

M s(IU,IW)u I + M s(IV,IW)v I + M s(IW,IW)w I t f vW Ev I f w I

oc

Ms(IUIW)u1 + M (IU,IV)v1 + Ms(IUW)w1 i f I cv1  [27]

oc

the summations being performed for a set of I given by 22].

16. From equation [27], uI can be written explicitly in terms of vI and wI l

allowing the matrix dimension to be reduced by a factor of 2/3:

SV(I)v + SVW (I)wi = cV(I) - fVv - fVW Ew

[ 28]

S VW(I)vI SW(I)w I cW(I) - fVW Ev -fEw I

- 12 -
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where

v 2
- wS (I) = M (IvIv) - M (IUIV) / M (IUIU)

S

vw
S (I) =M (Iv,IW) - M (IUIV) M (IU,IW) / m (IUIU) [9

S S S S

S w(I) =M (Iw,Iw) - M (IUIW) 2/ M (IuIu)

c v(I) Cfv + ch

[30]
w w w

C (I) C f t c h

" v = 5 v- I cuM (IU IV) /M (IUIU)

sh II U0  ][31]
" h = [Iw + c w 1 I 1 M (IUIW) / N (IUIUj

17. Equations [28] show that v1 and wis for any I, can be expressed in terms

of summations over v I andwI

V(I) = sW(I) Lv (I) - n] s v' (I) Lwu- ( - E] L2]

W(I) = V(1) [cW (I) - E- sv'(I) LI n -I n]

where

fV E v vw Ew

[3 3]
fvw E W +fW

E and Ew denoting Ev1 and Zw1 respectively,

s) 1) DI

sw (I) =S vw(1) /D(I)

w w [34]

D (I) =S v(I) / DI) 'I2

-13 -
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18. Substituting equations [32] into equations L28], it may be seen that

- f[3v[ls - f f) fw-s f - 3

L WV / VWEw = -C t1 S w fv _ -Svw fvw E. Gs w fv _ vw fw) [36

where

s = zsV(I) s = = (I) 37]

C = S c- s c s W(1 ) CsV -s (1) Ch
1 wf vw f sh sh

[38]
c:=- W - V, V W _ W v

C v vw fch s () cs

19. Equations [32] to [38] represent the closed form solution for the circum-
ferential (v) and radial (w) displacements of a hydrostatically loaded, slightly
non-circular, uniformly framed, ring-stiffened cylinder, with shape imperfection
eoc sin (K1x/L) cos (ne). Equations [35] to [38] may be evaluated directly in

terms of known shell and frame coefficients (equations [21] and [25] of
Appendix).

20. Equations [32] give v(I) and w(I) from which the shell displacements at
any position x using equations [6] and [22]. In this derivation the central
sign of equation [22] has been taken to be minus. If the 'plus' option is used
the final expressions take on the slightly modified, but numerically equivalent,
form given in (3).

21. The stresses, at position z on a frame section, are given by the following
expression

a(z) = a Wz t ab) W[39]
axbE

where the axisymmetric stress a (z) is given by
ax

Cax(Z) = E Wf / (R - S. Z) 40]

and the bending stress a b(z) is given by

ab (z) (E/R) [n v(x) - w(x) + (z/R) (n 2 
- 1) wxI [4.1]

-14-
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NUMERICAL EXAMPLES

22. Displacements and stresses have been evaluated on the two rather different
structures given in Table 1.

23. Displacements and stresses in the closely frame-spaced submersible
structure are given in Tables 2-4. The predictions of closed form and matrix
method are almost identical. The closed form method is particularly useful for
convergence tests (Table 4).

24. In the widely frame-spaced VAC type structure severe mixed-mode effect
occurs for n > 2. The closed form method provides therefore a very simple
method of allowing for mixed mode effect in ring-stiffened cylinders. Displace-
ments and stresses predicted by closed form and matrix methods agree almost
exactly (Figure 1, Table 5).

CONCLUSIONS

25. By means of analytical simplification, it is possible to derive rigorously
from thin-shell-theory, a closed form expression for the bending stresses in a
uniformly framed ring-stiffened cylinder with non-axisymmetric shape imperfec-
tion.

26. The analytic method has been implemented on a programmable pocket caicu-
lator and results are shown to agree with the predictions of more usual matrix
methods which require quite large computers for accurate solution.

27. It is felt that the 'closed form' method provides a useful means of check-
ing the prediction of:

a. more sophisticated methods, such as finite difference and finite
element, and

b. approximate methods used in design codes, such as the effective
breadth approach of BS5500.

The method is particularly appropriate for carrying out convergence studies to
assess the fine-ness of mesh required in more sophisticated analyses.

-. 15

- 15 -
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TABLE 1

CASE I - PV. SUBMERSIBLE

19 equispaced frames

R = 2000 mm d = 180.92 mm

h = 1 7 .879 mm h w 9.046 mmw
f = 90.46 mm
h f h 15.07 mm

E = 207000 N/mm' INTERNAL

v = 0.3

CASE 2 - PV4 VAC TYPE

I central. frame

R - 2 500 mm d 19 2 r.

h 20 mm h I2r mn
w

th: CL 1400O0 mm tC

2h f 0

E = 207000 N/mm2  
INTERNAL

V = 0.3

R shell radius d web depth
h shell thickness h web thicknessw

L shell length f flange widthE Young's modulus hf flange thickness
v Poisson's ratio

- 17 -
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TABLE 4

M N V W fl fl
b_ TOT

6 3.854 8.060 220 417.0

2 -2 4.080 8.653 224 421.5

3 4.106 8.723 225 422.0

5 30 4.116 8.749 225 423.0

PV4 Submersible n = 2, shape 20 cos 20 sin ix/L.

Convergence test: M convergence parameter,

N equivalent (IFAC 0) matrix size.

Pressure 3 N/mm2.

-20-
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TABLE 5

FRAME DISPLACEMENTS - PV4 VAC TYPE STRUCTURE

pressure = 0.3 N/mm2  e = 25 mm I =1

n 2 n 3 n = 4 n = 5 n 6

Circumferential Displacements (v)

Closed Form 1.3725 5.0266 2.4920 1.1397 0.44280

Matrix 1.3724 5.0292 2.5007 1.1502 0.44616

Radial Displacements (w)

Closed Form 2.7460 15.470 10.412 6.0950 2.9730

Matrix 2.7449 15.475 10.444 6.1474 2.9940

-21
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APPENDIX

In equations [i ee, ex. Yx8 are respectively the circumferential, axial

and shear strains. The displacements w, v, etc are measured from rest, the
superscript "r" being omitted for convenience. The extensional shell energy
is then given by the standard plane-stress, thin shell expression:

U e JERh/2(I-v2)] {eB 2 + ex 2  2veoe x [

o o [I

(112)(1 - v)y x2} dedx

2. The following expression for the shell bending strain energy was used by
Kendrick (6):

Ub = f IL LERhk/2 (1 - 2 {R2w xx2 + (wee + w) 2 /R2 +

o 0

(1/2)(1 - v)(w - u/a)2 + (3/2)(l - v)(v + )2 [A2]
x0 e x xo

2vw (w + v) + 2Ru W dxdO
xx 0e e x xx

h2  2

where k /12R . The shell energy contribution U= U + U Frame exten-
s e b

sional strains are expressed in terms of the mid-shell strain e8 and the change

of curvature due to in-plane bending, giving the following expression for the
extensional frame energy Fes

N f ;21
(EAR/2) o{e - ( wee + w)(e/R 2 )2 d8 [A3]

r~l 10

3. frame bending energy is given by:

Nf 
82 +w) 2 de A4]

F b E (EIJ2R ee ErKl o

4. The total frame energy Uf = Fe + Fb . The work done by external load on an

initially imperfect cylinder is found to be given by the following expression:

-22-V UNLIMITED
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W (p12) j 2Rw - w w - + 2R (w + w)(U + v /a) -

o 0

RuxVe} d0dx + (PR2/2) - u dxdex X

0 0

5. In all the expressions given above the superscript "r" denoting displace-
ments from rest has been omitted. On making the transformation:

ur (x,e) = U(x) + u(x,e)

Vr (x,e) v(x,) A6]

w (x,a) = w(x) + w(x,e)

the total potential energy U , is found to be given by the following expression:

U, = UA +UB +

where

U A  f 1hR/2 (1 - v2] {ux 2 + (v w)2 /R2 + 2vux (v6 - w)/R +

0 0

(1/2)(1 - v)(u 6 /R + vx)2 + k [2w 2 (W 2/R 2

(1/2)(1 - v)(w - u /R)2  2 (3/2)(1 -)(v + )2

[A 8]

2vw (w + v)+ 2RU w (EAR/2)

xx 6e e xxxj

r=l

S{wee + w)(eR 2 ) + (w- v)/

(I/R4A)(ws +w) 21 d6

-23-
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U B  fEh/2R2(1 - V2d {w E2v2 U - W 2 4wve -

Jo Jo

R2v(w 2 + v ) - 2Rvuv + [ + w 2  +

Rv (u 2  2 2wv8 ] +

w ZR[ uw - 2vR2 w (w - v e  I dedx + LA9]

Nf 2 2 7U .2

E (EA/2R )w {-(1 e/R) - 2v - (1 + e/R)w 2
r~l 0

4(1 + e/R)wv + (2e/R)weeVe 
de + (p/

2 ) 27r iL
o0 0

8w2 - 2w (v + RU 
) + RUxv dedx

UC fO j0 Eh/2R2(1 - v2] {w F2vRuwi _ 2vwi + 4ww_ 2w we

2 3

2R2 vw w + Ux E2Rvww + 2Rvwewe + 2R3wxwx +

w 2RV(v - w)wi + 2R3Uwxj]I d~dx +

[Ala]
Nf 2

E (EA/2R2) w -2v w1 + 4(1 + e/R)ww -

r=l
0

j i
2(1 + e/R)wew8  + (2e/R) w w de +

27 j L wi (w- We- Ru) dedx

0 0

Terms proportional to the end loads (P) do not appear explicitly in the final
expressions. Effects due to end loads are transferred through i, U and w •x x

- 24 -
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*6. On minimization of the energy expressions, the A and B matrices and the

c-vector may be written as follows:

A (IU,IU) =n 2(1 + k)(1 - v)/2 + 1 2x2

A s(IU,IV) = -nItA(I + v)!2

2 2
A (IU,IW) = I n -+ (1 v)kI/ + k(IX) 1

22 22

A5 (IW,IW) = (l. + k) + n k n2 - 2 +~ 2(IX)2] + k(IX)'

2 -

5(:u) -n b s

- sh
B s(IU,IV) -nIX/2 +- n b svIXe

B s(IuIW) z IA

- 2 2-s
B (IV,IV) bn~ s (IA) - + be
ss s x s

B (IV,IW) 1r + L b e(I s n s
s s Osx

B(I) b -c IX
2 F,

L 5c

C s(IV) =-4 e n 11+ h e ej 6 1oEAE

C (IW) = e L+ b5 1(2 - n 2 )- Sh + vn 2 
- ~ 2 sh + Ix) )2] 6 o
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2

A f(IV,JV) = n f S(I,J)

Af(IVJW) A f(IW,JV) :-nf=- (n2 _ )e' S(I,J) [A1]2) 2 2(n2 2- 2 21  [A14]

Af(IW,JW) = {ft 1 e - 2n2e t n (n 2)e] g(n2  1)2 (r rs

B f(IV,JV) = 2n2bf S(I,d)

f fBf (IV,JW) D f(IWJV) = nbf (ji e ) - n e] S(I,J) [A15]

2

B f(IW,JW) = n bf (1 t e ) S(I,J)

Cf (IV) = -ncff C(I)

LA16]

Cf (IW) = - cf 2 ( n 2 - 1)e + (n2 - 2] C(I)

where: -

IU = 31-2 JU = 3J-2

IV = 31-i JV = 3J-1 i17]

IW = 31 JW = 3J

k = h 2/12R = rR/L bs = Eh/R(l - v ) f AfNs(l - )/hL

[Al 8]
2 2 - 2g N Am2N (1-v )/hLR er e/R bf = -EAfwfNs/R2L Cf -e ocbf

Nf

S(I,J) = (2/N ) E sin (Inx./L) sin (Jxi/L) [A19]
s i=l 1

Nf

C(I) : (2/N ) Z sin (Inix./L) sin (I ocix/L) [A20]
i=1
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7. Calculations are simplified if matrix M is cast in the form of equation [I5]

with mu u etc defined as follows:0

uu 2 2-
m n + k)(1 - )/2 - *n bs

uu 2
m2

UV -nx(l + v)/
2 + [- nX/

1 F'1

m UW = X n 2(1 v)kA/2 + X
1
inuw3

m 3  = kX 3

vv 2 2 sh
m 0 n -2n bse0

vv 2 -2
m2  ( - v)(l + 3k)A /2 + OsxX b5

-n _ n 1 2be sh +b v sh0 - 1 - s 6 s x
o s

mi2  -n(3- v)RX2/2

mw = (I + k) + -n( 2) + n b-

ww 2 2 2-m 2  = 2n k.2 + 0 X

mww -k

where :-

;e sh (I 2 )/E{2-'
5 x

S. With reference to equations [3O] and [3l], the c-vector coefficients approp-

riate to the Kendrick expressions are as follows:

S -sh 27
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urcI  = -e +bv -*eocn A s ve eJ

Co [ 23]

W e n 2)-sh 2 sh
c 0 -eoc +bs(2 - +v(n 2  x

w-~p s 2
c2 = c x s

Cf = 1ncf

[A 24]

w = 2(n 2 2 2•cf : cf n - 1) r (

if

9. Frame coefficients fv, f vw and fw are given by:

fv = n2[ +2b f]

fvw = -nE{l - (n2 - 1)er + bf{2(1 + e) -r n2er A25]

f f1 + e)
2 

- 2n2e + n 2(n2 - 2)e2 + g(n - 1)2 + *bn 2  + e )
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